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Abstr act

A numer ical procedure is used to examine the influence of

transverse shear forces in the yield criterion and rotatory

inertia on the dynamic plastic response of beams. Various

results are presented for a long beam impacted by a mass and

a simply supported beam loaded impulsively, both of which are

made from a rigid perfectly plastic material with yielding

controlled by the Ilyushin-Shapiro yield criterion.

Transverse shear effects lead to a dramatic reduction in

the slopes of the deformed profiles for both beam problems.

Moreover , the slope of the deformed profile underneath the

striker in the impact problem is quite sensitive to the actual

shape of a yield curve , while the maximum transverse displace-

ment is less sensitive. The retention of rotatory inertia in

the basic equations leads to further reductions up to 17 and

10 per cent in the slopes and maximum transverse displacements,

respectively.
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Notation

(a) Notation used throughout the article

e, f defined by equations (6) and (17f) , respectively.

in mass per unit length of a beam

t time

w transverse displacement defined in Figure 1.

x axial coordinate defined in Figures 1, 4(b), and 6(b).

z location of interface in equations (2)

H beam thickness

mk2, where k is radius of gyration

M,Q bending moment and transverse shear force (per unit
length) defined in Figure 1

M0 fully plastic bending moment capacity of cross-section

ful ly plastic transverse shear capacity of cross-section

M,Q M/M0, Q/Q0

y shear angle

K curvature

rotation of mid-plane due to bending

defined by equation (9b)

C ’) 3/at, a /aT.

(b) Additional Notation used in Section 4

z location of interface defined in Figure 4(b).

G mass of striker

i2 mlr/G
2

K defined by equation (l7g)
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V iii

R energy divided by GV0
2/2

T dimensionless time defined by equation 07i)

dimensionless duration of first phase of motion

V0 initial velocity of mass G

V , V, V2 transverse velocities of beam defined in
Figure 4(b).

~~~~ 
~~~
‘ 

~
‘2 ~~~~~ ~~~~~ ~2~~o•

l2 mM0w/G 2V0
2 .

def i ned by equation ( 17 j )

x/z

8 angular rotation at centre of one half  of beam

0 6M0 0/GV0
2

defined by equations (llb , C)

(c) Additional Notation used in Section 5

z1, z2 locations of interfaces in Figure 6(b).

i2 I /mL2

t K defined by equation (54d)

2L span of beam

bending energy at time t divided by mLV0
2

RK kinetic energy at time t divided by mLV0
2

Rs energy absorbed in shear~ q deformations at time t

divided by mLV0
2

T dimensionless time defined by equation (54j)

dimensionless duration of first phase

V0 initial impulsive velocity

Ii
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iv

V 1 V1 defined in Figure 6(b)

‘~ , “~ 
V/V , V1/V0

M
0W/IUL

2
V 2

WT maximum permanent dimensionless transverse displacement

x/z1 I

811 132 Z1/L, z2/L

0 angular rotation at supports

~~~ O/mLV 2

v Q0L/2M0
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1. Introduction

It was remarked in References [1] and [2] that the

importance of transverse shear effects has recently become evident in

the dynamic plastic response of various structures. However,

the available theoretical solutions on the dynamic plastic behavior

of beams which retain the influence of transverse shear employ a

square yield condition relating the bending moment (M) and trans-

verse shear force (Q) required for plastic flow [1,3,4]. It is the

objective of this article to examine the influence of transverse

shear and rotatory inertia on the dynamic plastic response of l earns,

the behavior of which is controlled by more realistic yield cri-

teria relating the transverse shear force and bending moment.

A simple numerical procedure which employs piecewise

linear approximations with any desired accuracy for any yield

criterion is developed herein, and used to reconsider the

influence of transverse shear and rotatory inertia effects on

the two dynamic beam problems investigated in Reference [1].

2. Basic Equations

The equilibrium equations for a Timoshenko beam may be

written [1,3]

aQ/ax = mw - q and Q + aM/ax = 1r4’ (la,b)

where the total slope of the centre line of a beam is

aw/ax = 4i + y, iJ is the rotation of the line elements along

the centre line due to bending, y is the shear angle of points

along the centre line, and the remaining symbols are defined

in Figure 1 and the accompanying Notation .

I 
_ _- - - - — - - , - , -~~ ~‘ _ ,v~~ ~~~~~~~~ ~

--
~~ —- - 

- 
~~~~ ‘- -

— —~~~~~~~~~~~~~~~~~~~~~~~~~ -—-——-—— — — ~~---~~—~~~~~~ —----~~~ ~~~~~~~~~~~~~~~~~~ .... : _ .~~~~~~~~~~~



2

It may be shown [1,3] that continuity of the transverse

displacement (w) and angular deformation (
~ ) associated with a

moving interface in a rigid perfectly plastic Timoshenko beam

requires [1,3]
.2

[QI = mz [y)

‘2and [Ml = IrZ [K] , (2b)

where K = a*/ax, and [Xl means the difference of X on either

side of an interface which travels with a velocity . Various

other kinematic and equilibrium requirements at travelling

interfaces are given by equations (3) to (5) in Reference [1].

There has been considerable discussion in the literature

and no clear resolution as to whether an interaction curve

relating the generalised stresses N and Q is a proper

yield criterion or not. This question has been reconsidered

F in Reference [5) by examining all previous objections, including

Heyman’s [6], and it was concluded that a yield curve could

be used within the framework of beam theory . It was

suggested that a suitable compromise between the simple local

(stress resultant) and more rigorous non-local (plane stress,

plane strain) theories might be achieved for I-beams when using

a local theory with a maximum transverse shear force based only

on the web area. If this viewpoint is accepted , then it is not

possible to describe the local behavior of beams at supports,

or underneath concentrated loads, which is similar to the

prevailing situation with classical elastic beam theory.

- It is evident from Figure 5 in Reference [5] that a

number of local and non-local theories predict similar curves

in the M/M0 
- Q/Q0 plane for beams with rectangular 

cross-sections. 

— ~~- —•• --—-~—-— -— -—-- --~--- — —----- -
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Ilyushin [7] developed a yield surface for thin shells

with solid cross-sections using the von Mises yield criterion

and the usual assumptions of thin shell theory. Shapiro [8]

extended this theoretical work in order to cater for transverse

shear effects. It might be demonstrated when using standard

relations between inverse hyperbolic and logarithmic functions

that Hodge ’s [9] yield curve for a beam with a rectangular cross-

section is identical to Ilyushin-Shapiro ’s theoretical predictions

[7,8,10] for the plastic yielding of a beam which is subjected

to a bending moment and a transverse shear force. This yield

criterion is drawn in Figure 2 and may be written

0/0 = 4/sinh~ (3a)

and M/M: 
= coth~ 

- ~sinh 2
~ (3b)

where ~ is a parameter.

The theoretical procedure developed herein may be used

for any yield criterion , but the Ilyushin-Shapiro yield criterion

(equations(3)) is regarded as exact in this article.

3. Details of the Numerical Procedure

The yield criterion in the proposed numerical procedure

is replaced by an inscribing or circumscribing polygon having

“n” sides, or facets, as illustrated in Figure 2 for the

Ilyushin-Shapiro yield criterion governed by equations (3).

These piecewise linear approximations coincide with the exact

yield curve when n . It is evident from the corollaries of

the limit theorems of plasticity that the static collapse loads

associated with inscribing and circumscribing yield criteria

- - 
~~~~~~~~~~~~~~~~ 

- .
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are, respectively, lower and upper bounds to the static collapse

load according to the exact yield condition. The choice of n

is therefore related to the acceptable difference between the

two bounds.

Now it is apparent from Figure 2 that two types of plastic

deformation are associated with a piecewise linear yield condition:

Type A. The transverse shear force and bending

moment (Mi) are known when the generalised stresses are

located at a node “i” . However, the generalised plastic

strain rate vector is unknown but must lie within the

normals associated with the two adjacent facets “i - 1”

and “i” .

Type B. If the generalised stresses lie on a facet “i” ,

then the generalised plastic strain rate vector must be

normal to this facet. The generalised stresses can lie

anywhere on the facet “i” between the two adjacent nodes

“i” and “i + 1” .

A secant linearisation of the exact yield curve is now

constructed for the straight line which cuts the exact yield

condition as shown in Figure 3. The equation of this line is

Q/Q + (b5/a5) (M/M0) = b5 , (4)

which may be written

Q/Q0 ± (b /a ) (M/M0) = ± b5 (5)

in order to describe a straight line which cuts the yield 

,
~~
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curve in any of the four quadrants, where a
~ 

and b5 are the

absolute values of the intersections with the M/M0 and

axes, respectively.

A tangent linearisation of the exact yield curve is

constructed using straight lines which are tangential to the

exact yield criterion as indicated in Figure 3.

4. Impact of a Mass on a Long Beam

4.1 Introduction

Consider the infinitely long rigid perfectly plastic

beam shown in Figure 4a which is hit by a mass G travelling

with an initial velocity V0. The influence of rotatory

inertia and transverse shear forces on the dynamic plastic

response of this particular beam was examined from an analytical

viewpoint in Reference Ill with the aid of a square yield

condition relating Q and H. A numerical solution is sought

in this section using the Ilyushin-Shapiro yield curve, which

is given by equations (3) and illustrated in Figure 2. The

response of this beam consists of a number of phases which are

described in the following sections.

4.2 First Phase of Motion

Now, guided by the analytical solution presented in

Reference [1), it is conjectured that the velocity profile shown

in Figure 4b governs the behavior of this problem. A stationary

hinge develops underneath the striker at x = 0, the region

~$. z rotates as a rigid body, while z I x I z + t is a

plastic zone , and x > z + ~ is rigid and stationary .

The theoretical results in Reference [1]

- - - ----~~~~~~~~- -~~~~~ -- .- -——— ---- --
~~~~~

----
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indicate that the bending moment is M0 and 0 is negative

and quite small in the plastic zone z I x I z + £. This

suggests that the plastic zone might be confined to the vicinity

of the M/M0 axis of the yield curve in Figure 2 and that the

piecewise linear yield condition shown in Figure 5 might be

adequate. Equation (5) therefore gives

M/M0 = 1 + eQ/Q0 (6)

since a5 = 1 and where e = 1/be. If e = 0, then the tangent

line M/M0 = 1, which was used in Reference El], is recovered ,

while e > 0 corresponds to an inscribed facet. These two

cases would bound the predictions of the exact yield surface

quite accurately when Q/Q0 remains small.

Normality of the generalised strain rate vector to the

yield condition represented by equation (6) requires

= -eM ~/% (7)

which may be used to express a~z/ax = + -
~ in the form

= - e(M0/Q0)3*/3x . (8)

It may be shown that equation (la) with q = 0

and equations (lb), (6) and (8) give the partial differential

equation

a 2 ip/ax 2 
— ~~~ = o , (9a)

where 2 2 2 2  2 - 1
= mQ0 (me M0 + ‘r~o . (9b)

Thus, equations (9a) and (8) predict

= B sinhc2x + CcoshIlx (10)

and = ~i~~(B - eM0~C/Q0)coshc~x +

+ c~
l(C - eM0c2B/Q0)sinh c2 x + D , (11)

where B Ct) , C(t), and D(t) remain to be evaluated from the

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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boundary conditions and continuity requirements. If Q and

M are evaluated from equations Cia) , (lb), (10) and (11) and

substituted into equation (6), then it is found that

D 0 .  (12)

Now integration of equations (10) and (11) with respect to

time gives

i~(x,t) = E sinhc2x + Fcosh~2x (13a)

and s’ (x,t) = ~~~(E 
- eM0QF/Q0)coshQx+c2~~~(F-eM 0~E/Q0)sinhc~x

(l3b)

when satisfying the initial conditions ~j’(x,O) = ~r(x ,0) = 0

and where E(t) and F(t) are unknown . Equations (13) and

the requirements ~r(z,t) = V2(t) , ~ (z + L,t) = 0 and

+ -t,t) = 0 give

~v(x ,t) = V2 exp. 1-~
1(x — z)~ (14a)

and ~(x,t) = 
_ (mV2/Irc2) (l — eM0c2/Q0)exp.{-c~(x 

- z)I , (l4b)

when using equation (9b) and where z Ix ~~ . z +t and £- ‘

Thus, equations (la), (ib), (l4a) and (l4b) may be solved

to give the dimensionless transverse shear force and bending

moment in the form

~~(cz ,T) = -2A 0K
1
~~2exp. {KA (l 

- c L ) } - 2 A0ii2~ exp.{KA (l—c*)}
(15)

and i .i(ct,T) = 1 — l2fK 2
~~2 exp.{KA (l 

— a)}—l2~72
)~fK~~~exp.{KX(l — a)}

- 
(16)

when 1 < a < ~ and where the two “constants” of integration

are found by requiring that the yield condition (6) is satisfied

throughout the plastic zone (1 I a I c~~) at all times, and

- - - . —. - - - - - 
. 4 . .- - . ~~

- 
~~~~~~~~~~~~~ 

- -
~~~~-‘,~~~~~~‘:~~

- - -
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a = x/z , A = mz/G , A0 = 6mM0/Q0G , ~ = 
~/%‘  ~i = N/N0 ,

f = eM0c~/Q0 , K = c~G/m , 
~~ 

= V2/V0~ T = l2inM0t/G
2V0

V2 = V
2G

2/12mM0 , and ~ = GV0~/12M0 . (17a-k)

The velocity field in the rigid region 0 
~~ . 

x ~ z

is linear and may be written

z(x,t) = (mV2/Irc
~
){I cVm + (1 - eM c?/Q)(z - x)} (18)

when ~r(z,t) = V2 and noting that 3~~(z,t)/ax in the region

0 ~~x ~~. 
z is equalt to i~(z,t) given by equation (l4b) . Thus,

equations (la), (lb) and (18) give

= 2X0~72 ~(l — f) (1 — cz/2 ) aX 2 +I2KXcI}/I2K +

+ 2X~~Y2A5~(l 
— f)ct/I2K + ~ (0,T) (19)

and i.i(a,T) = 
~
l2
~ 2 1(1 

— f) Cl — ct/3)A3ci2/2 +I2Kct2A 2/2 ~,i
2 K —

— 6~ 2~~cx
2A 2(1—f)/I~< — l2

~ 2
(l — f)aA/K —

— 6ctXQ(0,T)/A0 + M(0,T), (20)

If (aw(z ,t)/atj = 0 , then equation (5a)

of Reference [1] gives [Q(z ,t)] = 0.

Now [Q(z,t)] = 0 implies (M(z,t)] = 0 for a non—linear yield

curve when disregarding the possibility that M has opposite signs

on either side of an interface. Thus, equation (5b) of [1]

gives [4,(z,t)] = 0. Finally, *(x,t) = aw(x ,t)/ax throughout

the rigid region since y(x ,t) = 0, from which follows the

continuity requirement used to obtain equation (18).

I ~~~~~~~~~~~~~~ 
- - -

~~
— - —

~~~~~
.- . —

~~~~
- - - - -

~~
;,---.— 

- ~~~~~~ :~
‘ ~. 

_ 1 ~~~~~ 
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~
- 
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where O I a Il 2i2 = m I / G , (21)

and ~ (0,T) and ~i(O,T) are the values of the transverse shear -
force and bending moment evaluated at x = 0 . It may be shown

that equations (15), (16), (19) and (20) give

~~~(0 , T) = -V2A0{(l-f) X24
2K + 2X + 2/K} -2X 0~ 2A{ l-f (1 

- f)A/12K}

and M(0,T) = 1 — 2~ 2j(1 — f)x 3/I2K +3A 2 
+ 6fA/K + 6f/K2} —

—6
~ 2~

{(l — f)A 2/I 2K + 2A + 2f/K} (23)

when satisfying [~~(l ,T)] = [M(l ,T)] = 0

Now, equilibrium under the striker travelling with a

velocity V requires Q(0,t) = GV /2 , or

~ (0,T) = x0~7 , (24a)

where = G~V / 12mM0 . (24b )

Thus , equations (22) and (24a) yield

~T =  1 — 2
~
i21 (l — f)A 2/2 + I2KX + 12}/12K, (25)

where ~~~~

‘ 
= V ’/V0 . Equation (25) may also be obtained from

conservation of linear momentum of the entire beam.

If ~ (0,T) = —l , 11(0,T) = 0 , and ~ = 0 during the

tirst phase of motion, then equations (18), (22), (23), and

(25) give

‘
~2 ~~~

1(T~(1 
— f)A1

2 
+ 212xA 1 + 212r’,X0 (26)

= 1(1 — f ’i X 1 + I2K}T~ (l — f ) X 1
2 

+ 212KA 1 +2I
2}~~ /A0 (27) 

__ _ _
~~

_:____ _ __T._ _ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ —4
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and V = 1 - T/A , (28 )

where 2(1 — f)X 1
3 + {6I

2K — (1. — f)A + 212(6f-KX 0) A1 +

+ 12f12/K —2 12A0 
= 0 , ( 29 )

and = ~i(0,t)/V0

Equation (5) can be written Q/Q0 + (b1/a1)(M/M0) =

for the plastic hinge immediately underneath the striker.

Thus , normality of the generalised strain rate vector to this

facet demands

= (b1/a1) (Q0/M) (30)

which becomes

— V2 (V— ~
) (6A 1/A0) (b1/a1) (31)

since ‘
~ = - (V  - V )/ t  and ~~ = - ( V  - V2)/zt for a plastic

hinge of length “ t” .

The f irst  phase of motion continues at the node

= 0, ~ (0,T) = -1 until the dimensionless time T1 when

the generalised strain rate vector in the beam underneath the

striker becomes normal to the adjacent facet of the piecewise

linear yield surface . If equations (26)  to (28)  are substituted

into the left hand side of equation (31) , then the dimensionless

time T1 occurs when equation (31) is satisfied, or

T1 X 1 (l — f)A 1
2 + 212KA + 212H (j. — f ) A 0 (a1/b1)/6 +

+ (1 — f ) (l + A J)A +(2A 1+ l ) 12K+a2} ’1 (32)

A second phase of motion commences at the dimensionless

h. T1~~ ~~~~~~~~~~~~~~~~-~~~~~~~-— ~~~~~~~~~~- - ~~~~~--
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time T1 with the generalized stresses at the plastic hinge

underneath the striker lying on facet 1 in Figure 5. This 4
phase of motion with A~ o is eventually completed at T2 when

the generalized stresses have migrated along facet 1 and reached

node 2. A third phase of motion then commences at T2 with the

generalized stresses remaining at node 2 and the generalized

strain rate vector rotating with time until it becomes normal

to the adjacent facet 2 at a dimensionless time T3. A fourth

stage of motion then follows with the generalized stresses

migrating along facet 2 in Figure 5. It is evident that the

response of this beam consists of a sequence of phases which

are characterized as either type A or type B which are defined

in section 3.

The governing equations are sought in the next two

sections for the cases when the generalized stresses are

either at a typical node i (type A) or on a typical facet i

(type B) of the piecewise linear yield condition in Figure 2.

4.3 Type A Response

As remarked earlier , the generalized stresses remain at

a node during a response characterized as type A. Now , ~ (O,T) =

-d
~ 

and ~i(O,T) = -g at the typical node “i” in Figure 2. Thus,

equations (22) and (23) may be integrated to give

~~~~~l _ f )X 2/I
2
K +2A + 2/K} = d

~ T/Ao + C1 (33a)

and 2~2{(l.f)A
3/t2K +3A 2 + 6fAAc46f/K2} = (1 + g1)T + C2, (33b)

where C1 and C2 remain to be found . If the present phase of

motion commenced at a d imensionless time Tk with associated

values Ak and V2(k)~ 
then



~ 
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C1 
= v2(k){( A k/IK+ 27~ + 2/K) 

— d iTk/A o (34a)

and C2 
= 2V2(k){(1_f)A~ /I2K + 3A~ + 6fX k/K + 6f/K 2} —

— (1 + g 1)T~ . 
- 

(34b)

Furthermore, eliminating V2 from equations (33) gives A at a

dimensionless time T in the form

{2( 1— f) (d~ T/A 0 + C
1

)~~~~
2

K~A
3 + {6(d.T/A0 + C1) — (1—f) (1 + g. )T/~~~K

—(l—f)C2/I
2
K}A

2 + 2{6f(d.T/A0 + C1)/K —(1 + g .) T  — C2 }A

+ 12f(d.T/A0+C1)/K
2 

— 2 {(1 + g~ )T + C2}/K = 0. (35)

Thus , equation (35) with C1 and C2 given by equations (34)

predicts A at any T which then allows V2 to be calculated using

equations (33a) and (34a). ~ may then be evaluated from equation

(18) with x = 0, or

= ‘~2 { 1—f x + 12K}/1
2K (36)

while ~ is given by equation (25). Finally , V2 and A

follow by dif ferentiating equations (33), or
. . —1
A = [cI j /A~ — V2 1(l ~ f ) A 2

/I2 K + 2A + 2/KI]f2V 2 ~(l—f)A/I~K + 4] , (37a)

and V2 = [(1 + g~ )X 0~~(l—f)VI
21( + 1~ —3d~ 1(1 f)X 2/12K +

+2A+2f/KI] [2A 01l + (1—f)VI 2K}~(l—f)X
3/I2K +

+3A 2 + 6fA/ K + 6f/K2
} — 3A 0 1 (l—f )A

2/12K +

+2A + 2f/K I ~(1—f)A
2/I2K +2A + 2/K I ] . (37b)

This phase of motion commences at a dimensionless tim’
~

Tk 
when the generalized strain rate vector underneath the striker

is at node i and is assumed to be perpendicular to facet i-i

of the piecewise linear yield curve in Figure 2. The general-

ized strain rate vector remains at node i and rotates during

The generalized strain rate vector could also be perper~çIicu1ar
to facet i at Tk.

-
. —-- - —-- -- — - - - --~~~~~--- - - - -  —------ - —~~~ -~~~~~~~~~~~~ - - - -  

~~~~~~~~~~

-

~~~~~~~
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the ensuing motion until the phase is completed at a dimension-

less time Tk+l, when the generalized strain rate vector is

perpendicular to facet i or returns to its initial position,

which is perpendicular to facet i—l. Thus, equation (31) gives

~~
k 

- 

~
12(k)~~~

1k 
- “K (6Ak/A O)(b~_l

/a
~~l

) (38a)

when the phase commences at Tk, and either

~~~(k+1) 
- V2(k+l)~~~

V (k+l) 
- V (k + l ) ) = (6A (k+l)/A )  (b1/a~ ), (38b)

or 
~~ (k+ 1) - 1

~2(k+1)~~~~~(k+1) 
- v (k +l)

) 
= (6A (k+l)/A o) (b~~1/a~~1) (38c)

• when this phase of motion is completed at Tk+l. V2(k41) and

A (k+l) are the initial values for the following phase of motion

which commences at Tk+l.

• The transverse velocities within the two zones o < x < z

and z < x < given by equations (18) and (14a) may be integrated

numerically with respect to time to predict the contribution to

the displacement prof ile accumulated dur ing the phase of motion

Tk < T < Tk+l . This is added to the transverse displacement

profi le  at Tk to give the total transverse displacement.

The bending moment and transverse shear force distribu—

tions in both zones at a dimensionless time T are calculated

from equations (15), (16), (19), (20), (33a), (34a), (35), (37a)

and (37b).

If k = 0, T0 = 0, and 
~2(o) 

= 0 when motion commences,

then Tk+l = T1, A k+l = A 1, and V2(k+l) = V2(1) are associated

with the first phase of motion considered in section 4.2 provided

i — 1, d~ — 1, g j  = 0 , A = 0, and V2(1) is identified with V2.

_ _ _ _ _ _ _ _ _ _ _ _  --4
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It is straightforward to show that C1 = C2 
= 0 according to

equations (34a) and (3db), while equations (33a), (35), (36),

and (38b) reduce to equations (26), (29), (27), and (31),

respectively. Thus, equation (32) for T1 is recovered since

~ is given by equation (25). It is not necessary to satisfy

equation (38a) at T0 = 0.

4 .4  Type B Response

As remarked earlier , the generalized stresses lie on a

facet of a piecewise linear yield curve during a type B response.

Consider the facet i in Figure 2 for which equation (5) may be

written

• ~ (O,T) + (b~/a1)~~(O,T) = -b 1 (39)

for the plastic flow in the beam directly underneath the striker.

The associated normality requirement according to equations (30),

(31), and (38b) is

(V — V2 ) / ( V  — 

~) = (6 A/A 0) (b 1/a 1) .  (40)

Now, substituting equations (25) and (36) into equation

(40) gives
2 2 2 1

V2 = I K
~
(a
~
/b
~
)(].—f)A /6 + (].—f)(1+A)A +1 K ( 1+2A)  +21 } (41)

and therefore according to equation (36)

—1
V = I ( l — f ) A  + 12x11(a /b.)(l—f)A 0/6 + (l—f)(1 +A )A+ i 2ic (1+2A)+2121 .(42)

Equations (22), (23) and (39) yield

T = V [2(1—f )A 3
/1

2
K + 6A

2 + l2 fA/K + 12f/K 2 + (a./b.)X I(l—f)A 2/1
2K +

2 —l _ 1 ’ ~ o
+ 2A + 2/K~~1(l + a~

) — C1
(1 + aj) . (43)

where C1 = ‘72(k) [2(l-f)A ~ /I2K+ 6A~ + l2fA k/K + 12f/K 2 +

&
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I

+ (a./b.)X 0 
1 (1_f)A~/I

2x÷ 2X
k 
+ 2/K } 1— (1 + a

~
)Tk (4 4 )

is obtained from the requirement that = 
~
T2 ( k )  and A = A

k

• at T = Tk when this phase of motion commences. The time

derivatives of equations (41) and (43) give

12KX {2(l—f)A + 1—f +2 I 2K}{(l—f )A2 + (1—f + 212
K )A +

2 —2
+ (l—f)A 0(a~

/b
~
)/6 +1 K + 212 } (45)

and A = {(l + ai)/1
2
K}{(l_f)A 2 + ( i f  +2I2K ) A  + (l—f)A 0(a~

/b
~
)/6 +

+12K +212} /[[6(l_f)X2/l2K + l2A + l2f/K +

+ (a ./b.)X {2(l—f)A/ I2K + 2}1{(1—f)X
2 

+ (1—f +21
2
1c)A +

+ (l—f )A (a ./b.)/6 + ]~K + 2I2 )~~ [2 (l—f)A 3/]~K + 6A 2 +

+ l2 fX/ K  + 12f/K 2 
+ A 0 (a ./b . ) { ( l — f ) X 2/j ~K + 2A + 2 / K } ] { 2 ( l — f ) A  +

+ 1 — f + 2I2K}] . (4 6)

Thus, ~~(O ,T) and ~i(O ,T) may be evaluated from equations (22)

and (23)  with the aid of equations (41), (43), (45)  and (46) .

Hence , ~~( c x , T) and M ( c t , T) may be calculated from equations (15) ,

( 16) , (19) and (2 0)  and the migration of the generalized

stresses followed along the facet i during this phase of motion,

which is completed at a dimensionless time Tk+l, when the

generalized stresses reach the next node i+l or return to node i.

ij 
~

__________ -- .‘-  . 
~~

- - — -~ :-

- — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- — - -
~ 
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5. Impulsive Loading of a Simply Supported Beam

5.1 Introduction

Consider the simply supported rigid perfectly plastic beam

shown in Figure 6(a) which is subjected to a uniformly distri-

buted impulsive velocity V0. It was found in Reference [1]

that the behavior of this beam is governed by transverse shear

effects alone and is independent of rotatory inertia when

0 < v <  l and where

V = Q~L/2M0. (47)

Furthermore, it may be shown that the associated generalised

stresses M and ~ throughout the entire beam either lie in or

within the Ilyushin-Shapiro yield curve. Thus, it is onl y

required to examine the case v �. 1 in this section. A numer-

ical solution is sought using the Ilyushin-Shapiro yield curve,

which is given by equations (3) and illustrated in Fi’ .re 2.

The response of this beam consists of two phases, which are

described in the two following sect ions .

5.2 First Phase of Motion

It is assumed that the beam in Figure 6( a)  responds with

the velocity field illustrated in Figure 6(b) . The regions

0 1 x 
~~

- 2 1 and z 2 I x I L are rigid , while a plastic zone de-

velops within the region z 1 I x I z 2 .

The transverse shear force (Q) in the plastic zone

(z S. x � L) is quite small and positive in the theoretical

• analysis presented in Reference [1]. . This suggests that a

linearisation similar to equation (6 )  may be used , or

- - - — - • - 
• • - - —: •

~~
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M/M = -l + eQ/Q0 (48 )

when z 1 � x � z 2 . Thus,  equations ( 10) to (12)  are again ob-

tained which give equation (l3a) and

w (x , t) = c~~~(E - fF)coshc~x + c2 1(F-fE)sinhQx + V
0 

(49)

for z 1 ~ x 1 2 2 when satisf ying ~ (x , 0) = 0 and w (x , 0) = V
0

and where ~ and f are defined by equations (9b )  and ( 17 f )

— respectively.

The velocity fields in the rigid regions 0 I x ~~- z 1 and

• z2 1 x 1 L a r e

~~(x ,t) = C (t )  + D ( t ) x  (50a )

and s,(x , t) = G ( t )  , (50b)

respectively.

It may be shown that equations (13a) , (49), and (50) give

~ (a,T) = + (~Y - ~i1)a (51)

in the rigid zone 0 I a i 1,

~(a ,T) = 1 + (~ —1) [cosh(K(B 2— c~ 1
)} + f sinh{K (~ 2— cx 81) }]/B,(52a)

and ~( a ,T) = K(l—V )sinh{K(B2— aB1) }/B , (52b)

where B = cosh ( K ( .~2 -81) } + f sinh {K (82— B 1) 
} (52c)

in the plastic zone 1 1 a I 
~2’~~l’ and

W ( a , T )  = 1 + ( V— l ) / B  (53)

for the central rigid zone 82/ B 1 
I a I 1/B1, when satisfying

~H 0 , t) = V1, s~(z1,t) = V, h ( z 1, t ) ]  = 0 , [~~(z 2 , t ) J  = 0, and

[ q,( z 21 tfl = 0, and where

~ 
I_~~_i•

_
~ _ _ _ ~_ . • _ _ ___~~__ ___ 

—-~~~~~~~_T~
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • --•---- -



18

a = X/z 1, B1 = z
1/L, ~2 

= z2/L, K = ~2L , i2 = Ir/mL
2,

V = V/V
0
, 

~~ 
= V

1/V0, ~ (a,t) = w ( x , t ) / V , ~ (a ,T) =

and T = M0t/mV0L2 . (54 a- j)

Now , if z 1 = z2 = 0 during the f i rs t  phase of motion (i.e.,

no travelling interfaces) , then equations (1) and (51) for

O~~~~a I l give

~~(ct ,T) = ct2 81(V — V1)/4v + cz B~V1/2v + 1 (SSa)

and a ,T) = a 3 81
2 (~i

1 - ~ )/ 6  - a2 B 1
2
~ 1/2 - 2 aB 1v + aI 2 (~~.-~ 1) (55b)

since 0,T) = 0 for simple supports and Q ( 0 ,T) = 1 for plastic

f low to develop at the supports, and where

~~(a ,T)  = Q(x,t)/Q , ~ (a ,t) = M ( x , t ) / M , V ( a , t) = mL2V (x ,t ) / M ,

and V1(a ,T) = mL2V1(x,t)/M . (56a—d)

Similarly, for the plastic zone (1 1 a I

Q(a,T) = —V[sinh{K (82— ct81)} + fcosh{K(82 —a$1) }1/2vBK (57a)

and M(cz,T) = -l - fV[sinh{K(82—a81
)} + fcosh{K(82 —c181)}]/BK

2 ,

(57b)

where the constants of integration were found by demanding

that equation (48) was satisfied throughout the plastic zone.

Finally ,

- 

• 

Q(a,’r) = ~ (a8 1 
— 

~2 
— f/K)/2vB (58a)

--



- - 

~~~~ 

- -

~~

.

and M(a,T) = — l  - ~~[a
2 B 1

2/2 - — afB 1/K + 1/2 +

(58b)

in the central rigid zone 82/81 
I a I 1/81 when [Q(82/81,T)] = 0

and [M(82/81, T)] = 0.

Thus, equation (58a) satisfies the symmetry requirement

T) = 0 when

82 = 1 — f/K . (59)

Moreover, ~w(x,t)/ax at x 21 (i.e., i~’( ~~1, t ) )  in the rigid

region equals i~ (z 1, t) in the plastic zone when

— V
1 

= — 8 1Kg s i n h( K ( 8 2 
— 81

)}/B. (60)

Furthermore , the conditions [~~(l ,T)] = 0 and [~~(l ,T) ] = 0 may

be solved to predict

= (vB 1
2/3 - 81/2  - 212u) (B

~~
/l2 + 8112 

+ 81~~ /2K 2 
+

81
2

D/3K + I 2D/K )~~~ (61a)

and V1 
= - (2 v 8  2 /3 - B i/2 + 2V 8 1D/K - D/K + 2I 2

~ +

+2vfD/K2) (B l~
/l2 + 12

81 
+ f B 1D/ 2K 2 

+ D8 1
2/3K + I 2D/K ) 1, (6 lb )

where

D = (sinh{K(8 2 ~
B1)} + fcosh{K(82 

— 81) } 1/ B , (6lc)

and 81 and 82 are related to the length of the plastic zone

and satisfy equation (60) which can be written with the aid

of equations (61) in the form

~1

_ _ _ _ _ _ _ _ _ _  -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~—~~~~~ -~~~~~~~~ --
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K (v8 2/3 — B i/2 — 212v) sinh ~K ( B 2 
— B1) } / B  = (8

1 
— v81

2 
—

— 2v81D/K + D/K — 2vf0/K 2
)/ 8 1. (6 2 )

Now, equations (61) predict

V = 1 + VT and V1 = 1 + V1T (63a,b)

since V = V1 = 1 at T = 0. The first phase of motion is

completed when V1 = 0, or

T
1 

= —l/V1, ( 64)

where V1 is given by equation (61b) , and the corresponding

transverse displacement profile and angular deformations can

be evaluated analytically in a straightforward manner.

5.3 Second Phase of Motion

The second phase of motion with ~ 0 and z2 = 0

commences at T = T1, when plastic shearing ceases at the

supports (V 1 = 0). Thus, equation (51) for the rigid zone

0 I a I 1 becomes

W(ct, T) = Va, (65)

while equations (52a) and (52b) remain valid for the plastic

zone with 1 1 a 1 82/81? and equation (53) remains valid

for the central rigid region 82/81 1 a 1 1/81. The require-

ment that ~w(x,t)/ax at x = 21 in the rigid region equals

‘~(x,t) in the plastic zone at x = z1 gives

I- 

- - - ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • - ~~~~~~~ --- -
~~~~~~~~~~~~~ 
-
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V = 81K t anh{K( 8 2 — Bi) Hi + ( f + 8
1

K) tanh{K(82 
— 81)1 I

—i . (66)

Equations (1) , (52a) , (52b), (53) , and (65) together

with equation (48), the simply supported boundary cor - :~-ions ,

L~~(ct,T)] = Ef~!(a,T)] = 0 at a = 82/ 81 and [~~(ct,T)] = 0 a =1

predict

= (V8
1 

— V81) (1 — a2)/4v — VD/2vK — (V — l)D281/2v (67a)

M(a,T) = (~ 1V — 81V) (a
3
81/6 

— $1a/2 
— aI2/81) +

+ VaDB1/K + ( V  — l)D2a8l~ 1 (67b)

for 0 I ~ I 1,

~ (a ,T) = -{~/K + (V  - l)D~1}[sinh{K(82 
- a8l)} +

+ fcosh {K(82 
— a81

) ) ) / 2 v 8  (68a)

~i(a,T) = -l — + (V-l) B1DK}[cosh{K(82 
- a8 1

) }/BK 2 
+

+ fsinh{K (82 
— ctB1) }/BK

2 
— i2 cosh{K(82 

— a81) }/BJ (68b)

for 1 1 a I 82/8l~ 
and

~ (a ,T) = + (V—l)KDB 1}(a81 
- 82 

— f/K)/2vB (69a)

M~c*,T) = ÷ (V—l)KD81}{1
2 

— 1/K 2 
— (a281

2 
— 2a8182 + 82

2 ) / 2  —

— f (8
2 

— a81) /K} /B — 1 (69b) 
• 

-

when 82/81 I a I 1/B i, where

6
1 

= ITILV
0
Z
1/M0. (70) 

• - - —-~~~~~~~~~ - .- ---~~~~~~
- ---

~~~~~~~
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The symmetry requirement ~ (l/B 1,T) = 0 again gives

equation (59), while [~i(l,T)J = 0 with equation (66) predicts

+ D8
1/K + i 2 

+ 1/K 2 
— i2 cosh {K(8 2 — 81) }/B ] —

- (B i/3 + 12/81 + D2B cosech{K(82 
- 81) }/K +

+ DB cosech {K (82 — 81
) }/K 2

81 
— I

2 D coth{K(82 
— 81)}/81]V81 = — l

which again using equation (66) becomes (71)

= _ Q 2 {[$
2
,3 + D8

1
/K + i

2 
+ 1/K

2 
— i 2 cosh{K (82 — 81) }/B]P 

—

— [8 1
2 K tanh{K(82 

— 81
)1/3 + 12 K tanh{K(82 

— 8i)} +

+ D281B sech{K(82 
— Bi)) + DB sech{K(82 

— 81
) }/K — I2DK]QJ

1,

(72 )
where

P = K tanh{K(82 
— 81) 1  + fKtanh2{K (82 — —

— 8 1K
2 sech2 {K(82 

— (73a)

and

O = 1 + C f  + 81K) tanh~K(B2 — 8~)} . (73b)

Motion f inally ceases at T = T
2 

when V = 0, or Bi = 82
according to equation (66), where 82 is given by equation (59).

Equation (72)  must be integrated numerically to give Bi
as a function of T during the second phase of motion . The

.

velocity V and acceleration V may then be calculated from

equations (66) and (71), respectively. Hence, the dimensionless

bending moments and transverse shear forces may be determined

from equations (67) to (69). The total transverse displacement

~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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profile at any position and time is found by a straightforward

integration of the velocity field given by equations (51),

(52a), (53), and (65) when making due allowance for a travelling

interface during the second phase of motion. In particular ,

the total transverse displacement at the supports is accumu-

lated during the first phase of motion since no further plastic

flow develops at the supports during the second phase of

motion, i.e.,

~ (0,T) 1

T1 V1dT = T1/2 , ( 7 4 )

where V1 and T1 are given by equations (63b) and (64),

T > T 1, and

~~(0 ,T) = M0w(o, t)/mV0
2L2. (75)

The transverse displacement accumulated at the mid—span during

the second phase is

W (l/ 8 1,T 2
) - t~ ( l/B 1,T 1

) = 
j

T
2 

~~(l/ 8
1

T)dT ( 7 6 )

T
1

• where ~ (l/B 11T) is given by equation (52a), and

= T
1

(l  + VT1
/2B) ( 7 7 )

is the contribution from equation (53) for the first phase.

The total slope at the supports at the end of the first phase

of motion is

ë(0 ,T 1
) = 
1

T
1 (V - V1 dT/8 1 = (V  - V1 T1

2
/281 

(78 )

according to equation (51), while the additional slope accumu-

I 
• .• ..-. - • A 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - 

•
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lated during the second phase of motion is

~ (0 ,T2
) — 

1

T 2 
VdT/81 ( 7 9 )

according to equation (65) , where

~(0 ,T) = M00(0,t)/mLV
2. (80)

It may be shown that the various equations in section 4
of Reference [1] for the problem illustrated in Figure 6a

with a square yield curve are recovered from the corresponding

equations with e = 0 in sections 5.2 and 5.3 here.

I 
_ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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6. Discussion

6.1 Impact of a Mass on a Long Beam

The numerical predictions for the response of the rigid

perfectly plastic beam in Figure 4(a) hit  by a mass travelling

with an initial velocity V0 are given in Figures 7 to 12.

The numerical values in Figure 7 indicate a relatively

- • small difference between the results for 2 facets and 50 facets

per quadrant, while the results for 10 facets, which are not

shown in Figure 7 , lie very close to the results for 50 facets.

-
• The theoretical results in Figures 7 and 8, with transverse shear

retained according to the Ilyushin-Shapiro yield condition but

rotatory inertia neglected (I = 0), are compared with the theo-

retical predictions of Symonds [31 for a square yield condition

and the simple bending only solution. It is clear that trans-

verse shear effects lead to a dramatic reduction in the angle

underneath the striker (IiI) and a significant increase in the

maximum transverse displacement underneath the striker (ii).

Moreover , the angle (~~) is quite sensitive to the actual shape

of the yield curve , while the maximum displacement (W) is less

sensitive.

The numerical results for the combined influence of trans-

verse shear and rotatory inertia on the dynamic response of beams

• having various cross-sections are compared in Figure 9 with the

• corresponding theoretical results presented in Reference [1] for

a square yield curve. The curves labelled cI~ to in Figure

9 respectively correspond to Wl4x87, Wl2x40, W24x55 wide flanged

I-sections and a 3/8 in. wide x 1 in. deep rectangular cross-

section beam hit by masses with mH/G = 1.10651. This mass ratio 

--~~~~~~ -— — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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was used by Parkes [ill in some of his cantilever tests. I-I

was taken as the total depth of a beam , and Q0 was calculated

using an area equal to the beam depth times the web thickness

and a shear yield stress of a
~
/2 as discussed in Reference El] .

Again the shape of the yield curve exercises an important

effect on the angle 0 , while the maximum transverse displace-

ment (ii) is fairly insensitive , particularly for the larger

values of A0. Thus, Figures 8 and 9 suggest that an analysis

with a square y ield curve (Reference [1] when I ~ 0 and Reference

[3] when I = 0) is adequate when the maximum transverse displace-

ments are of interest. However , the Ilyushin—Shapiro yield

curve must be used when the rotation under the striker (0) is

required.

The theoretical results in Figure 10 indicate the relative

importance of retaining transverse shear forces in the yield

criterion and rotatory inertia in the basic equations. The

influence of transverse shear forces is consistent with the

earlier remarks, while rotatory inertia is not noticeable in

the curves for A0 
= 24.357 (e . g . ,  Wl4x87 wide flanged I-section

with mH/G = 1.10651), but does lead to a reduction in O of

10%, approximately, when A 3.31953 (e.g., 3/8 in. wide x
0

1 in. deep rectangular beam with mH/G = 1.10651) .

The partition of the total energy and migration of the

• generalised stresses around the Ilyushin-Shapiro yield curve

are shown in Figures 11 and 12, respectively,  for A 0 = 8.102

and I = 0.4276.

I-
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6.2 Impulsive Loading of a Simply Supported Beam

The numerical predictions for the dynamic plastic response

of a simply supported beam governed by the Ilyushin-Shapiro

yield curve with e = 0.06 and subjected to a uniform impulsive

velocity V0 as shown in Figure 6(a) are presented in Figures

13 to 17. The curves labelled ~~ in Figures 14 and 16 corre-

spond to a beam with a rectangular cross-section , and the

curves labelled (1
3 

, ® , and are associated with the wide—

flanged I-sections having the cross-sections respectively

labelled (13, (1j , and~~~ in Figure 9. The results in Figures

13 to 16 are virtually indistinguishable from the corresponding

theoretical values presented in Reference [1] for

a square yield curve. Thus, the simpler theoreti-

cal predictions in Reference [1] for a square yield curve are

adequate for the problem shown in Figure 6(a). The presence

of a central rigid zone 82/81 1 a I 1/B
i 

which was considered

in sections 5.2 and 5.3 does not appear to influence the results

significantly. Indeed 82 = 0.985 for the particular beam ex-

amined in Figure 17 which means that the central rigid zone has

a total width of only 0.03L in this case. The duration of the

first phase of motion is T1 
= 0.10765 which is to be compared

with T1 = 0.10795 found in Reference [1].

It may be shown that the generalised stress profiles associ-

• ated with the theoretical solutions having I = 0 in References

El ] and [4] for a square yield curve, lie within or on Robinson ’s

circular yield curve [5,10] which in turn inscribes the Ilyushin-

Shapiro yield curve. Thus, the theoretical results with I = 0

in section 4.1 of Reference [4] and in Reference [1) are identi-

- — .‘-.~ • _. -~~~- • -~ ;-  .— .
- -
,
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cal to the corresponding theoretical predictions using an

Ilyushin—Shapiro yield curve, while the theoretical predictions

in Reference [1] with I ~ 0 are virtually indistinguishable

from the numerical results obtained herein.

It is evident from Figure 14 for V = 1.5 that the retention

of transverse shear effects in an analysis with I = 0 gives

the same values of W (dimensionless transverse displacement at

mid-span) which are predicted by a simple bending theory , while

the consideration of I leads to a reduction in the mid-span

transverse displacements (ti) up to ten per cent, approximately.

On the other hand , the inclusion of transverse shear effects

causes a significant reduction in ~ (dimensionless angle of ro—

tation at supports) , while consideration of rotatory inertia (I)
is responsible for a further decrease up to 17 per cent, approx-

imately.

The energy partition in Figure 15 for V = 1.5 is changed

significantly when the inf luence of transverse shear effects

is included in the yield curve since fifty per cent of the ini-

tial energy is then absorbed due to shearing deformations alone

when T ~ 1/6. The incorporation of rotatory inertia (I) in the

analysis causes a fur ther increase in the amount of energy ab-

sorbed due to transverse shear forces.

It is evident from the numer ical results in Figure 16 that

transverse shear effects and rotatory inertia have a negligible

• influence on the maximum permanent transverse displacements at

the mid-span when v>4 , approximately.

- 
-



-

29

6.3 General Comments

In order to avoid complete severance of the beams at th~

shear hinges it is necessary to ensure that the maximum shear

displacements in the numerical studies are less than some pro-

portion of the beam thickness [12].

The material was idealised as rigid perfectly plastic in

this article since this characterisation gave satisfactory

agreement between theoretical predictions and experimental re—

suits for many problems when the external dynamic energy was

greater than about five times the strain energy which corld be

absorbed in a wholly elastic manner [13]. In addition , the

influences of material strain rate sensitivity and geometry changes,

or finite transverse displacements, were disregarded . These

assumptions are probably reasonable for impulsively loaded

strain rate insensitive beams when supported without axial re-

straints, and for infinitely long strain rate insensitive beams

struck by a mass when the maximum transverse displacements are

less than the beam thickness, approximately [13]. The influence

of material strain hardening has been neglected in this work,

but some general remarks on this topic are presented in Ref er—

ences [13 , 14] .

The numerical procedure developed in this article could

be used to examine the behavior of the two beam problems when

• governed by any convex yield criterion which relates the trans-

verse shear force and bending moment required for plastic flow.

Moreover, the numerical scheme could be employed to solve many

other beam problems in an inexpensive manner and appears suffi- 

- - - - - - -4
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• ciently attractive to warrant fur ther development in order to

study the dynamic plastic response of plates and shells.

7. Conclusions

A numerical procedure has been used to examine the in-

f lu ence of transverse shear forces in the yield criterion

and rotatory inertia on the dynamic plastic response of beams.

Various results are presented for a long beam impacted by a

mass and a simply supported beam loaded impulsively , both of

which are made from a rigid perfectly plastic material with

yielding controlled by the Ilyushin-Shap iro yield criterion.

Transverse shear effects lead to a dramatic reduction in

the slopes of the deformed profiles for both beam problems.

Moreover , the slope of the deformed profile underneath the

striker in the impact problem is quite sensitive to the actual

shape of a yield curve , while the maximum transverse displace-

ment is less sensitive. The retention of rotatory inertia

in the basic equations may lead to a further 10 per cent

reduction in the slope of the impact problem, and reductions

of up to 17 per cent and 10 per cent for the slopes and trans-

verse displacements of the impulsive problem , respectively.

1:
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